A common periodic representation of interaural time differences in mammalian cortex
نویسندگان
چکیده
Binaural hearing, the ability to detect small differences in the timing and level of sounds at the two ears, underpins the ability to localize sound sources along the horizontal plane, and is important for decoding complex spatial listening environments into separate objects - a critical factor in 'cocktail-party listening'. For human listeners, the most important spatial cue is the interaural time difference (ITD). Despite many decades of neurophysiological investigations of ITD sensitivity in small mammals, and computational models aimed at accounting for human perception, a lack of concordance between these studies has hampered our understanding of how the human brain represents and processes ITDs. Further, neural coding of spatial cues might depend on factors such as head-size or hearing range, which differ considerably between humans and commonly used experimental animals. Here, using magnetoencephalography (MEG) in human listeners, and electro-corticography (ECoG) recordings in guinea pig-a small mammal representative of a range of animals in which ITD coding has been assessed at the level of single-neuron recordings-we tested whether processing of ITDs in human auditory cortex accords with a frequency-dependent periodic code of ITD reported in small mammals, or whether alternative or additional processing stages implemented in psychoacoustic models of human binaural hearing must be assumed. Our data were well accounted for by a model consisting of periodically tuned ITD-detectors, and were highly consistent across the two species. The results suggest that the representation of ITD in human auditory cortex is similar to that found in other mammalian species, a representation in which neural responses to ITD are determined by phase differences relative to sound frequency rather than, for instance, the range of ITDs permitted by head size or the absolute magnitude or direction of ITD.
منابع مشابه
Distribution of interaural time difference in the barn owl's inferior colliculus in the low- and high-frequency ranges.
Interaural time differences are an important cue for azimuthal sound localization. It is still unclear whether the same neuronal mechanisms underlie the representation in the brain of interaural time difference in different vertebrates and whether these mechanisms are driven by common constraints, such as optimal coding. Current sound localization models may be discriminated by studying the spe...
متن کاملA systematic representation of interaural intensity differences in the auditory cortex of the pallid bat.
The current model of cortical processing of auditory spatial information is based on an orthogonal representation of frequency and binaural response properties, but how this arrangement leads to representation of space in the auditory cortex is unclear. This study describes the first evidence of a cortical substrate for the systematic representation of space in a region of primary auditory cort...
متن کاملThe Representation of Interaural Time Differences in High-Frequency Auditory Cortex.
Early representations of auditory features often involve neuronal populations whose tuning is substantially wider than behavioral discrimination thresholds. Although behavioral discrimination performance can be sometimes achieved by single neurons when using the appropriate part of their (wide) tuning curves, neurons that encode the resulting high-acuity representations have rarely been describ...
متن کاملReliability of Interaural Time Difference-Based Localization Training in Elderly Individuals with Speech-in-Noise Perception Disorder
Background: Previous studies have shown that interaural-time-difference (ITD) training can improve localization ability. Surprisingly little is, however, known about localization training vis-à-vis speech perception in noise based on interaural time difference in the envelope (ITD ENV). We sought to investigate the reliability of an ITD ENV-based training program in speech-in-noise perception a...
متن کاملTuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus.
Barn owls process sound-localization information in two parallel pathways, the midbrain and the forebrain pathway. Exctracellular recordings of neural responses to auditory stimuli from far advanced stations of these pathways, the auditory arcopallium in the forebrain and the external nucleus of the inferior colliculus in the midbrain, demonstrated that the representations of interaural time di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 167 شماره
صفحات -
تاریخ انتشار 2018